The realization space is [1 1 0 -x1^2 + x1 - 1 0 1 1 0 -x1^2 + x1 - 1 1 1] [1 0 1 -x1 0 1 0 1 -x1 x1 x1] [0 0 0 0 1 1 1 -x1 + 1 -x1^3 + x1^2 - x1 x1 -x1^2 + x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^10 - 5*x1^9 + 11*x1^8 - 14*x1^7 + 11*x1^6 - 5*x1^5 + x1^4) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1, x1^2 - x1 + 1, x1^3 - x1^2 + 1, x1 + 1, 2*x1 - 1, 2*x1^2 - 2*x1 + 1, x1^2 + 1, x1^3 - 2*x1^2 + 3*x1 - 1, x1 - 2, x1^2 - 2*x1 + 2]